Fitting quotients of finitely presented abelian-by-nilpotent groups
نویسندگان
چکیده
We show that every finitely generated nilpotent group of class 2 occurs as the quotient of a finitely presented abelian-by-nilpotent group by its largest nilpotent normal subgroup.
منابع مشابه
nilpotent quotients in finitely presented Lie rings †
A nilpotent quotient algorithm for finitely presented Lie rings over Z (LIENQ) is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed...
متن کاملComputing nilpotent quotients in finitely presented Lie rings
A nilpotent quotient algorithm for finitely presented Lie rings over Z (LIENQ) is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed...
متن کاملGroups whose proper quotients are virtually abelian
The just non-(virtually abelian) groups with non-trivial Fitting subgroup are classified. Particular attention is given to those which are virtually nilpotent and examples are given of the interesting phenomena that can occur.
متن کاملNilpotent Completions of Groups, Grothendieck Pairs, and Four Problems of Baumslag
Two groups are said to have the same nilpotent genus if they have the same nilpotent quotients. We answer four questions of Baumslag concerning nilpotent completions. (i) There exists a pair of finitely generated, residually torsion-free-nilpotent groups of the same nilpotent genus such that one is finitely presented and the other is not. (ii) There exists a pair of finitely presented, residual...
متن کاملElementary Equivalence and Profinite Completions: a Characterization of Finitely Generated Abelian-by-finite Groups
In this paper, we show that any finitely generated abelian-byfinite group is an elementary submodel of its profinite completion. It follows that two finitely generated abelian-by-finite groups are elementarily equivalent if and only if they have the same finite images. We give an example of two finitely generated abelian-by-finite groups G, H which satisfy these properties while G x Z and H x Z...
متن کامل